
© Copyright IBM Corporation 2010 Trademarks
A quick introduction to the Google C++ Testing Framework Page 1 of 10

A quick introduction to the Google C++ Testing
Framework
Learn about key features for ease of use and production-level
deployment

Arpan Sen (arpansen@gmail.com)
Independent author

11 May 2010

Google provides an interesting and easy-to-use open source alternative for developing unit
tests to validate C/C++ based software. This article introduces readers to some of the more
useful features of the Google C++ Testing Framework and is based on version 1.4 of the
release.

Why use the Google C++ Testing Framework?

There are many good reasons for you to use this framework. This section describes several of
them.

Some categories of tests have bad memory problems that surface only during certain runs.
Google's test framework provides excellent support for handling such situations. You can repeat
the same test a thousand times using the Google framework. At the first sign of a failure, the
debugger is automatically invoked. In addition, all of this is done with just two switches passed
from command line: --gtest_repeat=1000 --gtest_break_on_failure.

Contrary to a lot of other testing frameworks, Google's test framework has built-in assertions
that are deployable in software where exception handling is disabled (typically for performance
reasons). Thus, the assertions can be used safely in destructors, too.

Running the tests is simple. Just making a call to the predefined RUN_ALL_TESTS macro does the
trick, as opposed to creating or deriving a separate runner class for test execution. This is in sharp
contrast to frameworks such as CppUnit.

Generating an Extensible Markup Language (XML) report is as easy as passing a switch: --
gtest_output="xml:<file name>". In frameworks such as CppUnit and CppTest, you need to write
substantially more code to generate XML output.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
mailto:arpansen@gmail.com

developerWorks® ibm.com/developerWorks/

A quick introduction to the Google C++ Testing Framework Page 2 of 10

Creating a basic test
Consider the prototype for a simple square root function shown in Listing 1.

Listing 1. Prototype of the square root function
double square-root (const double);

For negative numbers, this routine returns -1. It's useful to have both positive and negative tests
here, so you do both. Listing 2 shows that test case.

Listing 2. Unit test for the square root function
#include "gtest/gtest.h"

TEST (SquareRootTest, PositiveNos) {
 EXPECT_EQ (18.0, square-root (324.0));
 EXPECT_EQ (25.4, square-root (645.16));
 EXPECT_EQ (50.3321, square-root (2533.310224));
}

TEST (SquareRootTest, ZeroAndNegativeNos) {
 ASSERT_EQ (0.0, square-root (0.0));
 ASSERT_EQ (-1, square-root (-22.0));
}

Listing 2 creates a test hierarchy named SquareRootTest and then adds two unit tests,
PositiveNos and ZeroAndNegativeNos, to that hierarchy. TEST is a predefined macro defined in
gtest.h (available with the downloaded sources) that helps define this hierarchy. EXPECT_EQ and
ASSERT_EQ are also macros—in the former case test execution continues even if there is a failure
while in the latter case test execution aborts. Clearly, if the square root of 0 is anything but 0, there
isn't much left to test anyway. That's why the ZeroAndNegativeNos test uses only ASSERT_EQ while
the PositiveNos test uses EXPECT_EQ to tell you how many cases there are where the square root
function fails without aborting the test.

Running the first test
Now that you've created your first basic test, it is time to run it. Listing 3 is the code for the main
routine that runs the test.

Listing 3. Running the square root test
#include "gtest/gtest.h"

TEST(SquareRootTest, PositiveNos) {
 EXPECT_EQ (18.0, square-root (324.0));
 EXPECT_EQ (25.4, square-root (645.16));
 EXPECT_EQ (50.3321, square-root (2533.310224));
}

TEST (SquareRootTest, ZeroAndNegativeNos) {
 ASSERT_EQ (0.0, square-root (0.0));
 ASSERT_EQ (-1, square-root (-22.0));
}

int main(int argc, char **argv) {
 ::testing::InitGoogleTest(&argc, argv);
 return RUN_ALL_TESTS();
}

ibm.com/developerWorks/ developerWorks®

A quick introduction to the Google C++ Testing Framework Page 3 of 10

The ::testing::InitGoogleTest method does what the name suggests—it initializes the
framework and must be called before RUN_ALL_TESTS. RUN_ALL_TESTS must be called only once in
the code because multiple calls to it conflict with some of the advanced features of the framework
and, therefore, are not supported. Note that RUN_ALL_TESTS automatically detects and runs all the
tests defined using the TEST macro. By default, the results are printed to standard output. Listing 4
shows the output.

Listing 4. Output from running the square root test
Running main() from user_main.cpp
[==========] Running 2 tests from 1 test case.
[----------] Global test environment set-up.
[----------] 2 tests from SquareRootTest
[RUN] SquareRootTest.PositiveNos
..\user_sqrt.cpp(6862): error: Value of: sqrt (2533.310224)
 Actual: 50.332
Expected: 50.3321
[FAILED] SquareRootTest.PositiveNos (9 ms)
[RUN] SquareRootTest.ZeroAndNegativeNos
[OK] SquareRootTest.ZeroAndNegativeNos (0 ms)
[----------] 2 tests from SquareRootTest (0 ms total)

[----------] Global test environment tear-down
[==========] 2 tests from 1 test case ran. (10 ms total)
[PASSED] 1 test.
[FAILED] 1 test, listed below:
[FAILED] SquareRootTest.PositiveNos

 1 FAILED TEST

Options for the Google C++ Testing Framework
In Listing 3 you see that the InitGoogleTest function accepts the arguments to the test
infrastructure. This section discusses some of the cool things that you can do with the arguments
to the testing framework.

You can dump the output into XML format by passing --gtest_output="xml:report.xml" on the
command line. You can, of course, replace report.xml with whatever file name you prefer.

There are certain tests that fail at times and pass at most other times. This is typical of problems
related to memory corruption. There's a higher probability of detecting the fail if the test is run a
couple times. If you pass --gtest_repeat=2 --gtest_break_on_failure on the command line, the
same test is repeated twice. If the test fails, the debugger is automatically invoked.

Not all tests need to be run at all times, particularly if you are making changes in the code
that affect only specific modules. To support this, Google provides --gtest_filter=<test
string>. The format for the test string is a series of wildcard patterns separated by colons (:).
For example, --gtest_filter=* runs all tests while --gtest_filter=SquareRoot* runs only the
SquareRootTest tests. If you want to run only the positive unit tests from SquareRootTest, use --
gtest_filter=SquareRootTest.*-SquareRootTest.Zero*. Note that SquareRootTest.* means
all tests belonging to SquareRootTest, and -SquareRootTest.Zero* means don't run those tests
whose names begin with Zero.

developerWorks® ibm.com/developerWorks/

A quick introduction to the Google C++ Testing Framework Page 4 of 10

Listing 5 provides an example of running SquareRootTest with gtest_output, gtest_repeat, and
gtest_filter.

Listing 5. Running SquareRootTest with gtest_output, gtest_repeat, and
gtest_filter

[arpan@tintin] ./test_executable --gtest_output="xml:report.xml" --gtest_repeat=2 --
gtest_filter=SquareRootTest.*-SquareRootTest.Zero*

Repeating all tests (iteration 1) . . .

Note: Google Test filter = SquareRootTest.*-SquareRootTest.Z*
[==========] Running 1 test from 1 test case.
[----------] Global test environment set-up.
[----------] 1 test from SquareRootTest
[RUN] SquareRootTest.PositiveNos
..\user_sqrt.cpp (6854): error: Value of: sqrt (2533.310224)
 Actual: 50.332
Expected: 50.3321
[FAILED] SquareRootTest.PositiveNos (2 ms)
[----------] 1 test from SquareRootTest (2 ms total)

[----------] Global test environment tear-down
[==========] 1 test from 1 test case ran. (20 ms total)
[PASSED] 0 tests.
[FAILED] 1 test, listed below:
[FAILED] SquareRootTest.PositiveNos
 1 FAILED TEST

Repeating all tests (iteration 2) . . .

Note: Google Test filter = SquareRootTest.*-SquareRootTest.Z*
[==========] Running 1 test from 1 test case.
[----------] Global test environment set-up.
[----------] 1 test from SquareRootTest
[RUN] SquareRootTest.PositiveNos
..\user_sqrt.cpp (6854): error: Value of: sqrt (2533.310224)
 Actual: 50.332
Expected: 50.3321
[FAILED] SquareRootTest.PositiveNos (2 ms)
[----------] 1 test from SquareRootTest (2 ms total)

[----------] Global test environment tear-down
[==========] 1 test from 1 test case ran. (20 ms total)
[PASSED] 0 tests.
[FAILED] 1 test, listed below:
[FAILED] SquareRootTest.PositiveNos
 1 FAILED TEST

Temporarily disabling tests

Let's say you break the code. Can you disable a test temporarily? Yes, simply add the DISABLE_
prefix to the logical test name or the individual unit test name and it won't execute. Listing 6
demonstrates what you need to do if you want to disable the PositiveNos test from Listing 2.

ibm.com/developerWorks/ developerWorks®

A quick introduction to the Google C++ Testing Framework Page 5 of 10

Listing 6. Disabling a test temporarily
#include "gtest/gtest.h"

TEST (DISABLE_SquareRootTest, PositiveNos) {
 EXPECT_EQ (18.0, square-root (324.0));
 EXPECT_EQ (25.4, square-root (645.16));
 EXPECT_EQ (50.3321, square-root (2533.310224));
}

OR

TEST (SquareRootTest, DISABLE_PositiveNos) {
 EXPECT_EQ (18.0, square-root (324.0));
 EXPECT_EQ (25.4, square-root (645.16));
 EXPECT_EQ (50.3321, square-root (2533.310224));
}

Note that the Google framework prints a warning at the end of the test execution if there are any
disabled tests, as shown in Listing 7.

Listing 7. Google warns user of disabled tests in the framework
1 FAILED TEST
 YOU HAVE 1 DISABLED TEST

If you want to continue running the disabled tests, pass the -gtest_also_run_disabled_tests
option on the command line. Listing 8 shows the output when the DISABLE_PositiveNos test is run.

Listing 8. Google lets you run tests that are otherwise disabled
[----------] 1 test from DISABLED_SquareRootTest
[RUN] DISABLED_SquareRootTest.PositiveNos
..\user_sqrt.cpp(6854): error: Value of: square-root (2533.310224)
 Actual: 50.332
Expected: 50.3321
[FAILED] DISABLED_SquareRootTest.PositiveNos (2 ms)
[----------] 1 test from DISABLED_SquareRootTest (2 ms total)

[FAILED] 1 tests, listed below:
[FAILED] SquareRootTest. PositiveNos

It's all about assertions
The Google test framework comes with a whole host of predefined assertions. There are two
kinds of assertions—those with names beginning with ASSERT_ and those beginning with EXPECT_.
The ASSERT_* variants abort the program execution if an assertion fails while EXPECT_* variants
continue with the run. In either case, when an assertion fails, it prints the file name, line number,
and a message that you can customize. Some of the simpler assertions include ASSERT_TRUE
(condition) and ASSERT_NE (val1, val2). The former expects the condition to always be true
while the latter expects the two values to be mismatched. These assertions work on user-defined
types too, but you must overload the corresponding comparison operator (==, !=, <=, and so on).

Floating point comparisons
Google provides the macros shown in Listing 9 for floating point comparisons.

developerWorks® ibm.com/developerWorks/

A quick introduction to the Google C++ Testing Framework Page 6 of 10

Listing 9. Macros for floating point comparisons
ASSERT_FLOAT_EQ (expected, actual)
ASSERT_DOUBLE_EQ (expected, actual)
ASSERT_NEAR (expected, actual, absolute_range)

EXPECT_FLOAT_EQ (expected, actual)
EXPECT_DOUBLE_EQ (expected, actual)
EXPECT_NEAR (expected, actual, absolute_range)

Why do you need separate macros for floating point comparisons? Wouldn't ASSERT_EQ work? The
answer is that ASSERT_EQ and related macros may or may not work, and it's smarter to use the
macros specifically meant for floating point comparisons. Typically, different central processing
units (CPUs) and operating environments store floating points differently and simple comparisons
between expected and actual values don't work. For example, ASSERT_FLOAT_EQ (2.00001,
2.000011) passes—Google does not throw an error if the results tally up to four decimal places. If
you want greater precision, use ASSERT_NEAR (2.00001, 2.000011, 0.0000001) and you receive
the error shown in Listing 10.

Listing 10. Error message from ASSERT_NEAR
Math.cc(68): error: The difference between 2.00001 and 2.000011 is 1e-006, which exceeds
0.0000001, where
2.00001 evaluates to 2.00001,
2.000011 evaluates to 2.00001, and
0.0000001 evaluates to 1e-007.

Death tests
The Google C++ Testing Framework has an interesting category of assertions (ASSERT_DEATH,
ASSERT_EXIT, and so on) that it calls the death assertions. You use this type of assertion to check
if a proper error message is emitted in case of bad input to a routine or if the process exits with a
proper exit code. For example, in Listing 3, it would be good to receive an error message when
doing square-root (-22.0) and exiting the program with return status -1 instead of returning -1.0.
Listing 11 uses ASSERT_EXIT to verify such a scenario.

Listing 11. Running a death test using Google's framework
#include "gtest/gtest.h"

double square-root (double num) {
 if (num < 0.0) {
 std::cerr << "Error: Negative Input\n";
 exit(-1);
 }
 // Code for 0 and +ve numbers follow

}

TEST (SquareRootTest, ZeroAndNegativeNos) {
 ASSERT_EQ (0.0, square-root (0.0));
 ASSERT_EXIT (square-root (-22.0), ::testing::ExitedWithCode(-1), "Error:
Negative Input");
}

int main(int argc, char **argv) {
 ::testing::InitGoogleTest(&argc, argv);
 return RUN_ALL_TESTS();
}

ibm.com/developerWorks/ developerWorks®

A quick introduction to the Google C++ Testing Framework Page 7 of 10

ASSERT_EXIT checks if the function is exiting with a proper exit code (that is, the argument to
exit or _exit routines) and compares the string within quotes to whatever the function prints to
standard error. Note that the error messages must go to std::cerr and not std::cout. Listing 12
provides the prototypes for ASSERT_DEATH and ASSERT_EXIT.

Listing 12. Prototypes for death assertions

ASSERT_DEATH(statement, expected_message)
ASSERT_EXIT(statement, predicate, expected_message)

Google provides the predefined predicate ::testing::ExitedWithCode(exit_code). The result of
this predicate is true only if the program exits with the same exit_code mentioned in the predicate.
ASSERT_DEATH is simpler than ASSERT_EXIT; it just compares the error message in standard error
with whatever is the user-expected message.

Understanding test fixtures

It is typical to do some custom initialization work before executing a unit test. For example, if you
are trying to measure the time/memory footprint of a test, you need to put some test-specific code
in place to measure those values. This is where fixtures come in—they help you set up such
custom testing needs. Listing 13 shows what a fixture class looks like.

Listing 13. A test fixture class

class myTestFixture1: public ::testing::test {
public:
 myTestFixture1() {
 // initialization code here
 }

 void SetUp() {
 // code here will execute just before the test ensues
 }

 void TearDown() {
 // code here will be called just after the test completes
 // ok to through exceptions from here if need be
 }

 ~myTestFixture1() {
 // cleanup any pending stuff, but no exceptions allowed
 }

 // put in any custom data members that you need
};

The fixture class is derived from the ::testing::test class declared in gtest.h. Listing 14 is an
example that uses the fixture class. Note that it uses the TEST_F macro instead of TEST.

developerWorks® ibm.com/developerWorks/

A quick introduction to the Google C++ Testing Framework Page 8 of 10

Listing 14. Sample use of a fixture

TEST_F (myTestFixture1, UnitTest1) {

.
}

TEST_F (myTestFixture1, UnitTest2) {

.
}

There are a few things that you need to understand when using fixtures:

• You can do initialization or allocation of resources in either the constructor or the SetUp
method. The choice is left to you, the user.

• You can do deallocation of resources in TearDown or the destructor routine. However, if you
want exception handling you must do it only in the TearDown code because throwing an
exception from the destructor results in undefined behavior.

• The Google assertion macros may throw exceptions in platforms where they are enabled in
future releases. Therefore, it's a good idea to use assertion macros in the TearDown code for
better maintenance.

• The same test fixture is not used across multiple tests. For every new unit test, the framework
creates a new test fixture. So in Listing 14, the SetUp (please use proper spelling here) routine
is called twice because two myFixture1 objects are created.

Conclusion

This article just scratches the surface of the Google C++ Testing Framework. Detailed
documentation about the framework is available from the Google site. For advanced developers,
I recommend you read some of the other articles about open regression frameworks such as the
Boost unit test framework and CppUnit. See the Resources section below for further information.

ibm.com/developerWorks/ developerWorks®

A quick introduction to the Google C++ Testing Framework Page 9 of 10

Resources

Learn

• Read the Google TestPrimer to get started with the Google C++ Testing Framework.
• For advanced Google C++ Testing Framework topics, check out the Google

TestAdvancedGuide.
• Go to the Google TestFAQ for tips and frequently-asked questions about the Google C++

Testing Framework.
• Explore "Open source C/C++ unit testing tools, Part 1: Get to know the Boost unit test

framework" (developerWorks, December 2009).
• Check out "Open source C/C++ unit testing tools, Part 2: Get to know

CppUnit" (developerWorks, January 2010).
• For more information about floating point comparisons, read What Every Computer Scientist

Should Know About Floating-Point Arithmetic by David Goldberg and Comparing floating
point numbers by Bruce Dawson.

• Browse the technology bookstore for books on these and other technical topics.

Get products and technologies

• Evaluate XL C/C++ for AIX
• Download the Google C++ Testing Framework software.
• Download IBM product evaluation versions or explore the online trials in the IBM SOA

Sandbox and get your hands on application development tools and middleware products from
DB2®, Lotus®, Rational®, Tivoli®, and WebSphere®.

Discuss

• Check out developerWorks blogs and get involved in the developerWorks community.
• Follow developerWorks on Twitter.
• Get involved in the My developerWorks community.
• Participate in the AIX and UNIX® forums:

• AIX Forum
• AIX Forum for developers
• Cluster Systems Management
• Performance Tools Forum
• Virtualization Forum
• More AIX and UNIX Forums

http://code.google.com/p/googletest/wiki/GoogleTestPrimer
http://code.google.com/p/googletest/wiki/GoogleTestAdvancedGuide
http://code.google.com/p/googletest/wiki/GoogleTestAdvancedGuide
http://code.google.com/p/googletest/wiki/GoogleTestFAQ
http://www.ibm.com/developerworks/aix/library/au-ctools1_boost/
http://www.ibm.com/developerworks/aix/library/au-ctools1_boost/
http://www.ibm.com/developerworks/aix/library/au-ctools2_cppunit/index.html
http://www.ibm.com/developerworks/aix/library/au-ctools2_cppunit/index.html
http://docs.sun.com/source/806-3568/ncg_goldberg.html
http://docs.sun.com/source/806-3568/ncg_goldberg.html
http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
http://www.ibm.com/developerworks/apps/SendTo?bookstore=safari
http://www.ibm.com/developerworks/downloads/r/xlcplusaix/
http://code.google.com/p/googletest/downloads/list
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/downloads/soasandbox/
http://www.ibm.com/developerworks/downloads/soasandbox/
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/community
http://twitter.com/developerworks
https://www.ibm.com/developerworks/mydeveloperworks
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=747
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=905
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=907
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=749
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=748
http://www.ibm.com/developerworks/forums/dw_auforums.jspa

developerWorks® ibm.com/developerWorks/

A quick introduction to the Google C++ Testing Framework Page 10 of 10

About the author

Arpan Sen

Arpan Sen is a lead engineer working on the development of software in the
electronic design automation industry. He has worked on several flavors of UNIX,
including Solaris, SunOS, HP-UX, and IRIX as well as Linux and Microsoft Windows
for several years. He takes a keen interest in software performance-optimization
techniques, graph theory, and parallel computing. Arpan holds a post-graduate
degree in software systems. You can reach him at arpansen@gmail.com.

© Copyright IBM Corporation 2010
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

mailto:arpansen@gmail.com
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Why use the Google C++ Testing Framework?
	Creating a basic test
	Running the first test
	Options for the Google C++ Testing Framework
	Temporarily disabling tests
	It's all about assertions
	Floating point comparisons
	Death tests
	Understanding test fixtures
	Conclusion
	Resources
	About the author
	Trademarks

